GENERAL FEATURES

Since 1905, G\&W has provided custom power solutions to utilities and electric power users around the world. G\&W has a wide selection of reliable, quality switching and fault interrupting products to meet the most stringent customer requirements. Whether the application involves load switching, line sectionalizing, fault interruption or distribution automation, G\&W can provide a solution for distribution system switching and protection. When specifying switchgear, consider these features:

Maximum Operator Safety

SF_{6} gas is a nontoxic, nonflammable switching dielectric. Dead-front switch construction eliminates any exposed live parts. Spring-assisted mechanisms assure quick-make, quick-break operation. Viewing windows permit visual verification of open or closed contacts. Tamper-resistant enclosures utilize penta-head bolts and padlocking provisions. Motor actuators are available permitting remote operation. The result is maximum operator safety.

Minimal Maintenance

G\&W SF_{6} switches are corrosion-resistant, totally sealed and factory filled. No more field adjustments of critical contact areas or concerns with environmental contamination or intrusions. A periodic check of the pressure gauge is all that is required. Galvaneal type enclosures assure maximum corrosion resistance.

Application Versatility

Multi-way Configurations - Switches are available for either two-position or three-position (incorporating an integral ground, tie or test position) switching. Single or multiple sources can feed multiple loads. Bus tie configurations are available permitting multiple sources to feed different loads within the same switch.

Mounting Flexibility - Horizontal and vertical configurations are available with operating apparatus accessible from the front, top or side compartments. Enclosures are removable for easy cable installation or field replacement.

Bushing Variety - Many bushing styles are available including an exclusive disconnectable style permitting field changeout. Cable entry can be bottom, front, back or side.

Visible Break - Load break switches can incorporate a visible break of all three phases.

Overcurrent Protection - Fusing or electronically controlled, resettable vacuum interrupters are available.

Smart Grid / Lazer Solutions - Complete SCADA distribution automation and Smart Grid solutions are available including automatic transfer. G\&W's Lazer distribution automation systems provide pre-engineered, time-proven solutions for automatic power restoration.

TWO POSITION LOAD BREAK SWITGHES

Two Position Load Break, Front Access, SPRAM-F / PRAM-F

Available in rotary puffer (RP) and linear puffer (PI) designs.

SPRAM-F styles provide the most compact construction due to diagonal bushing arrangements with a 6-1/2" phase spacing. These models can accommodate bushing mounted fuses.

PRAM-F styles incorporate in-line bushing arrangements with a 5 " phase spacing. Bushings can be top, bottom, front or side mounted.

Rotary Puffer (RP) ratings
 Maximum design voltage,

\qquad
kV..... 15.5
Voltage class,
kV... 25
.$~$ 25
Impulse level (BIL)
kV............................ 110 125
One minute withstand, AC kV....................... 3560
One minute withstand,
Production test rating
AC kV...................... 34 40
15 minute withstand, DC kV

.53 78
Continuous and load break current, Amps....................... 630 630Momentary current,kA asym................... 25.6 .20
Fault-close current, (3 times) kA asym................... 25.6 20
One second current, kA sym. 16 12.5
Operations load interrupting endurance (15 kV) at 600 A 500 350Mechanical endurance,operations

20002000
Linear Puffer (PI) ratingsMaximum design voltage,kV.................15.5......27.......... 38

Voltage class,
\qquad
Impulse level (BIL), kV. 110
One minute withstand, AC kV .35 ... 6070

One minute withstand, Production test rating AC kV .34 4050

TWO POSITION LOAD BREAK SWITCHES

Two Position Load Break, Front Access, SPRAM-F / PRAM-F

One-line Diagram (Horizontal)	Voltage Class (kV)	Mom. (kA) asym.	Catalog Number*	Approximate	
				Width in. (mm)**	Wt. w/SF 6 lbs (kg)

SPRAM-F Two Position Load Break, Front Access

*SPRAM catalog numbers shown. For PRAM catalog numbers, remove prefix " S ".
**For RP designs: Enclosure depth = 48.6" (1234mm), height = 58.7"
(1491mm) based on SPRAM style. For PRAM style add up to $8^{\prime \prime}$ (207mm) to width dimensions. Depth and height are the same as SPRAM style.
For PI designs: Enclosure depth $=55^{\prime \prime}$ (1397mm), height $=46^{\prime \prime}$ (1168mm) based on SPRAM style. For PRAM style add 2.5" (63mm) per way to width dimensions. Depth and height are the same as SPRAM style.

	15	25	SPRAM21-376F-25RP	38.1 (969)	1100 (499)
		40	SPRAM21-376F-40PI	41.1 (1045)	1350 (614)
	25	20	SPRAM21-386F-20RP	38.1 (969)	1100 (499)
		40	SPRAM21-386F-40PI	41.1 (1045)	1350 (614)
	35	40	SPRAM21-396F-40PI	41.1 (1045)	1350 (614)
 	15	25	SPRAM33-376F-25RP	50.1 (1274)	1400 (636)
		40	SPRAM33-376F-40PI	53.8 (1365)	1700 (773)
	25	20	SPRAM33-386F-20RP	50.1 (1274)	1400 (636)
		40	SPRAM33-386F-40PI	53.8 (1365)	1700 (773)
	35	40	SPRAM33-396F-40PI	53.8 (1365)	1700 (773)
\mid 	15	25	SPRAM44-376F-25RP	62.1 (1578)	1700 (772)
		40	SPRAM44-376F-40PI	66.1 (1680)	2000 (909)
	25	20	SPRAM44-386F-20RP	62.1 (1578)	1700 (772)
		40	SPRAM44-386F-40PI	66.1 (1680)	2000 (909)
	35	40	SPRAM44-396F-40PI	66.1 (1680)	2000 (909)
 	15	25	SPRAM55-376F-25RP	74.1 (1883)	2000 (908)
		40	SPRAM55-376F-40PI	78.6 (1997)	2500 (1136)
	25	20	SPRAM55-386F-20RP	74.1 (1883)	2000 (908)
		40	SPRAM55-386F-40PI	78.6 (1997)	2500 (1136)
	35	40	SPRAM55-396F-40PI	78.6 (1997)	2500 (1136)
	15	25	SPRAM66-376F-25RP	86.1 (2187)	2200 (999)
		40	SPRAM66-376F-40PI	91 (2311)	2600 (1182)
	25	20	SPRAM66-386F-20RP	86.1 (2187)	2200 (999)
		40	SPRAM66-386F-40PI	91 (2311)	2600 (1182)
	35	40	SPRAM66-396F-40PI	91 (2311)	2600 (1182)
Bus Tie	15	25	SPRAM45-376F-25RP-BT	74.2 (1885)	2250 (1023)
		40	SPRAM45-376F-40PI-BT	78.5 (1991)	2000 (909)
	25	20	SPRAM45-386F-20RP-BT	74.2 (1885)	2250 (1023)
		40	SPRAM45-386F-40PI-BT	78.5 (1991)	2000 (909)
	35	40	SPRAM45-396F-40PI-BT	78.5 (1991)	2000 (909)

For typical specifications, go to www.gwelec.com.
For contact principle, see pages 34 and 35 .

GONTAGT PRINGIPLES

Two Position,

 Linear Puffer StyleG\&W's patented Linear Puffer (LP) style, two-position switches are ideal for heavy duty manual load break switching, automatic transfer or automated sectionalizing applications rated through 35 kV , 900A continuous and 40kA asymmetrical short circuit. Switches are tested to 1200 loadbreak and 2000 mechanical operations. Current limiting fuses or electronically controlled vacuum interrupters can be added for overcurrent protection. G\&W's LP style contact system provides extremely efficient, high speed arc extinction for maximum service life.

Stored Energy Mechanism

 Linear puffer switches can be supplied with internal stored energy (cock and trip) mechanisms for both the open and close operators permitting high speed local or remote operation. A separate external trip handle is provided. An optional internal solenoid permits remote operation.
© Three phase visible position of contacts.

Three phase linear puffer mechanism.

Two Position, Linear Puffer Contact Principle

A. The stationary contact and piston assembly (containing the moving contact and nozzle) are housed in clear cylindrical tubes. These are mounted in a modular three-phase assembly which is independent of the switch tank. The stationary contacts are supported independent of the cable entrance bushings, eliminating
 possible misalignment resulting from tank deflections. Tank deflections are caused by normal tank pressure variance due to ambient temperature fluctuations. This construction eliminates contact alignment difficulties caused by deflections of the switch tank walls. The modular construction also allows testing of the module during assembly and complete flexibility in switch design and configuration. The nozzle which directs the flow of SF_{6} has a converging/diverging geometry (see photo) which improves the arc interruption capability over designs using straight throated nozzles. The converging portion of the nozzle has a constantly decreasing flow area up to the nozzle throat minimizing velocity changes in the flow of SF_{6} gas, while improving arc interruption and dielectric recovery.
B. As the contacts separate, the SF_{6} is compressed by the piston assembly and directed into the arc zone by the nozzle. The compressed SF_{6} flows (is puffed) across the contacts and around the arc established by the separating contacts. The cooling action of the gas is increased by the higher pressure (due to compression) and the flow which constantly provides a supply of cool SF_{6} into the arc zone.
C. At current zero the temperature of the arc is reduced to the point of deionization, ceasing the flow of current. The SF_{6} rapidly recovers dielectric strength withstanding the system recovery voltage across the contacts.
D. As the contacts are closing, the piston assembly compresses the SF_{6} between the contacts. This increases the dielectric strength of the gap, minimizing prestrike. The contacts are designed using a tulip bayonet construction (see photo). The sliding action of the contacts on engagement provides a self cleaning action of the main current carrying sur-faces. The contact fingers are designed for increasing contact pressure with increasing current for proper operation during momentary or close-into-fault conditions. The contacts have arc resistant copper tungsten tips to minimize erosion of material during load switching and prevent damage to the main current transfer area of the contacts.

aterssories and options

3-1/C, 600A Quik-Change Apparatus Bushings

Cable entrance bushings can be damaged at any time due to improper handling, accidental shifting during shipment, elbow failure or even normal wear and tear. In the case of SF_{6} gas insulated switches where the tank is totally welded, conventional bushing replacement means sending the switch back to the factory for repair. G\&W's exclusive Quik-Change Disconnectable Bushing permits quick, easy field replacement without having to open the switch tank.

Bushings are designed to IEEE 386 standards with standard interface accepting conventional elbow style connectors and include an aluminum conductor with 5/8"-11 aluminum threaded stud and aluminum single hole pad (elbows must be ordered separately). Copper studs are available. For bottom entry switches, recommended switch frame height is $42^{\prime \prime}$ for all voltages.

3-1/C, 600A Voltage Sensing Bushings

G\&W's Voltage Sensing Bushing (VSB) system is a temperature compensated, built-in, voltage measuring system that eliminates the need for PTs when three phase analog voltage monitoring is required. Compared to potential transformers, the VS bushing system offers these benefits:

- Significant cost savings
- Cleaner, less cumbersome installation
- Less space required
- Fewer add-on components which could potentially fail
- Installed and tested prior to shipment
- Can be field calibrated
- One digital output per way for threshold voltage detection

The VS bushing system utilizes a capacitively coupled screen which is embedded within the epoxy bushing. The low energy output of the screen is amplified by integral circuitry, resulting in a 0-120 VAC analog output suitable for direct connection to any relay, IED or RTU. The circuitry incorporates built-in calibration and temperature compensation which improve accuracy.

Bushings are designed to IEEE 386 standards with standard interface accepting conventional elbow style connectors and include an aluminum conductor with 5/8"-11 aluminum threaded stud and aluminum single hole pad (elbows must be ordered separately). Bushings are bolt-on style. Copper studs are available. For bottom entry switches, recommended switch frame height is 42 " for all voltages.

SPECIFICATIONS

Operating temperature: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Input voltage range (phase-to-phase): 10.7 kV - 38 kV

Nominal output voltage: 120 VAC

Analog voltage outputs: 3 or 6
Number of digital outputs: 1 or 2
Digital pick-up voltage:
90% of Vnom (on all phases)
Digital drop-off voltage:
75% of Vnom (on any phase)

Maximum burden (per output): 0.06 VA Voltage accuracy:
$+/-2 \%$ from $0^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ and $+/-5 \%$ from $-40^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$.
Voltage signal delay: $1 / 2$ cycle max

3-1/C, 600A / 900A Apparatus Bushings

Bushings are designed to IEEE 386 standards with standard interface accepting conventional elbow style connectors and include an aluminum conductor with 5/8"-11 aluminum threaded stud and aluminum single hole pad for a 600A rating (elbows must be ordered separately). A copper conductor is available which extends the continuous current rating to 900A. For bottom entry switches, recommended switch frame height is $42^{\prime \prime}$ for all voltages. Welded flange bushings are available.

AGGESSORIES AND OPTIONS

3-1/C, 200A Deepwell Bushings

Bushings are designed to IEEE 386 standards with standard interface accepting deadbreak or loadbreak inserts and conventional elbow connectors (inserts and elbows must be ordered separately). A copper conductor is standard. For bottom entry switches, recommended switch frame height is 42 for all voltages. Welded flange bushings are available.

3-1/C, 600A Apparatus Bushings Welded Flange style

Bushings are designed to IEEE 386 standards with standard interface accepting conventional elbow style connectors. Bushings include a stainless steel flange and an aluminum conductor with $5 / 8$ "-11 aluminum threaded stud. Elbows must be ordered separately. 200A deepwell welded flange bushings are also available.

3-1/C, 600A Universal Bushings

The combination Universal Cable End and Universal bushing provides an extremely versatile interface between cable and equipment for easy connecting, disconnecting, and isolating of distribution cable circuits. End caps for both bushing and splice module permit dead-ending of the cable and equipment for fast cable sectionalizing if required.
Universal bushings are designed to accept G\&W universal bushing cable ends (G\&W Universal bushing cable ends must be ordered separately. See chart below). An aluminum conductor and aluminum single hole pad is standard. For bottom entry switches, recommended switch frame height is 36 " for all voltages. Hi-pot test kits are available.
NOTE: Universal bushings can accept up to two G\&W Universal bushing cable ends per phase. For applications requiring this feature, consult factory.

Universal Bushing Cable Ends (per phase)
Complete cable data required before order can be processed.

Configuration	Catalog Number	
	15.5 kV	27 kV
Terminate 1 cable per phase	15 CE	27 CE
Terminate 2 cables per phase	$15 \mathrm{CE}-\mathrm{CE}$	$27 \mathrm{CE}-\mathrm{CE}$
Dead End Kit	15 DCE	27 DCE
Change 1 cable per phase to 2 cables per phase*	151 V 2	271 V 2
Change 2 cables per phase	152 V 1	272 V 1

ACGESSORIES AND OPTIONS

For standard components, refer to typical specifications at www.gwelec.com under Support.

Gas Pressure Gauge and Fill Valve (Standard)

The pressure gauge is a "GO-NO-GO" style which is color coded to simplify verification of proper operating conditions. A Schraeder type fill valve permits refilling in the field. The gauge and fill valve are made of brass for corrosion resistance. Both components are protected by a steel guard.

Temperature Compensated Gas Density Gauge (Optional)

 measures internal tank gas density for maximum precision of switch operating conditions. The gauge is colored coded to simplify reading by operating personnel.
Viewing Windows (Standard)

 provide a means to visibly verify switch contact position. Single phase or three phase contact viewing is available.
\triangle Auxiliary switches

Window Cover (Optional)
Available for Type 1, Type 2, or Type 3 interrupter controls.

© Pressure gauge and fill valve

© Temperature compensated gauge

A Key interlocks

- Low pressure warning device

A $S F_{6}$ density switch

Key Interlocks (Optional)

may be used as an added safety measure to prevent operation by unauthorized personnel or to assure safe coordination of energized equipment. Switches can be provided with provisions only (two maximum per operating mechanism) or with key interlocks factory installed. Specify locking scheme when ordering, i.e. lock in open, lock in closed or lock in both open and closed position. For key interlocks to be coordinated with other equipment, manufacturer's information must be provided.
Ground Lugs (Optional)
are bronze, eyebolt style for 4/0 maximum conductor cable.

Auxiliary Switches (Optional)

 can be included to provide remote indication of contact position. One N.O. and one N.C. contact is supplied and can be wired by G\&W or the customer. A maximum of two auxiliary switches can be installed per operating mechanism.
Low SF $_{6}$ Remote Monitoring Devices:

1) Low Pressure Warning Devices are factory set at 5 psig and permit remote indication of internal tank pressure. It can also be used for low pressure control lockout. One Form C contact is provided for wiring by the customer.
Recommended for installations where ambient temperature does not fall below $0^{\circ} \mathrm{F}\left(-15^{\circ} \mathrm{C}\right)$.

2) $\boldsymbol{S F}_{6}$ Density Switches

permit remote indication of internal tank gas density to assure proper pressure/temperature operating conditions. One Form C contact is provided for wiring by the customer. Recommended for installations where ambient temperatures fall below $0^{\circ} F\left(-15^{\circ} \mathrm{C}\right)$.

AGGESSORIES AND OPTIONS

Options

Select from the following options and add to the appropriate switch specification:

- Stainless steel tank, type 304
- Stainless steel enclosure, type 304 or 316
- Temperature compensating pressure gauge
- Low pressure warning device
- SF_{6} density switch
- $4 / 0$ brass ground lug
- Key interlock provisions
- Key interlocks to lock in open position
- Current transformers for load break ways
- Potential transformers for voltage monitoring and/or control power
- Automatic transfer control type ATC451-4
- Motor actuators for remote switch operation
- Auxiliary switches for remote switch position indication
- Stationary switch controls for remote switch operation and SCADA integration
- Portable switch controls for remote switch operation
- Remote terminal units and communication packages for SCADA integration
- Operation counters
- Voltage sensors with 120 VAC output or a contact to indicate presence of voltage
- 200A deepwell bushings
- 600A apparatus bushings
- 600A voltage sensing bushings
- 600A Quik-Change apparatus bushings
- 600A Universal bushings (through 25kV)
- Type 2 vacuum interrupter control including ground fault trip and time delay selector switches (three phase only)
- Type 3 vacuum interrupter control including ground fault trip, inrush restraint, programmable vacuum fluorescent display (VFD) and RS232/485 port
- Type 4 vacuum interrupter control (same as Type 3 with laptop programming only)
- Clear window cover for Type 1, Type 2, or Type 3 interrupter controls
- Submersible NEMA 6P enclosure for vacuum interrupter control
- SEL relays including 751A, 501, 551 and others
- External power / trip for vacuum interrupter control
- Refill kit consisting of regulator, hose and SF_{6} bottle

